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Dividing the acoustic repertoires of animals into biologically relevant categories presents a
widespread problem in the study of animal sound communication, essential to any comparison of
repertoires between contexts, individuals, populations, or species. Automated procedures allow
rapid, repeatable, and objective categorization, but often perform poorly at detecting biologically
meaningful sound classes. Arguably this is because many automated methods fail to address the
nonlinearities of animal sound perception. We present a new method of categorization that
incorporates dynamic time-warping and an adaptive resonance theory �ART� neural network.
This method was tested on 104 randomly chosen whistle contours from four captive bottlenose
dolphins �Tursiops truncatus�, as well as 50 frequency contours extracted from calls of transient
killer whales �Orcinus orca�. The dolphin data included known biologically meaningful categories
in the form of 42 stereotyped whistles produced when each individual was isolated from its
group. The automated procedure correctly grouped all but two stereotyped whistles into
separate categories, thus performing as well as human observers. The categorization of
killer whale calls largely corresponded to visual and aural categorizations by other researchers.
These results suggest that this methodology provides a repeatable and objective means of
dividing bioacoustic signals into biologically meaningful categories. © 2006 Acoustical Society of
America. �DOI: 10.1121/1.2139067�

PACS number�s�: 43.80.�n, 43.60.Np, 43.80.Lb, 43.80.Ka �WWA� Pages: 645–653
I. INTRODUCTION

A. Categorization of sound patterns by humans
and computers

A widespread problem in the study of animal sound
communication lies in dividing the patterns that make up the
acoustic repertoire of an individual or group into biologically
relevant categories. We refer to this process as categorization
to distinguish it from classification, the process of assigning
sound patterns to predefined categories. Biologically mean-
ingful categorization is fundamental to any study attempting
to compare repertoires between contexts, individuals, popu-
lations, or species. Historically, such categorization was usu-
ally carried out by human observers who sorted the sound
patterns into categories according to their perceived similar-
ity. Categorization by human observers requires the subjects
to decide which features are important in defining categories
and how these features should be weighted. Humans use
their natural pattern recognition skills to solve such tasks.
However, the judgments and decisions made on weighting
different features in a pattern can differ between individuals
�Jones et al., 2001� and can be difficult to quantify since
humans are not usually aware of the threshold values they
use �e.g., Rendell and Whitehead, 2003�. This makes it dif-

ficult to compare acoustic repertoires between studies con-
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ducted by different people. One way of solving this problem
is to use several observers. One can then use categories that
observers agreed on and measure threshold values that dis-
tinguish these categories. However, this is a time-consuming
process that limits the amount of data included in any com-
parison. Thus, an automated method that categorizes sound
patterns in a biologically meaningful way would be an ex-
tremely valuable analytical tool.

Categorization of animal sounds has usually been based
on the patterns of frequency modulation over time. Ap-
proaches to achieve automated classification have included
clustering schemes based on various measures of similarity
�e.g., Symmes et al., 1979; Chabot, 1988�, principal compo-
nents analyses �e.g., Clark, 1982; Cerchio and Dahlheim,
2001�, or combinations of these procedures �e.g., Nowicki
and Nelson, 1990; Elowson and Hailman, 1991�. However,
such standard methods often fall far short of observer ratings
in accuracy and frequently fail to detect biologically mean-
ingful categories �see Janik, 1999�. We argue here that this
poor performance of current methods is largely due to failure
to consider two fundamentals of acoustic perception when
measuring the similarity of sound patterns: flexibility in the
time domain and the exponential perception of sound fre-

quency.
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B. Time and frequency resolution in the auditory
perception of birds and mammals

Any categorization scheme of sound patterns requires a
measure of the similarity of sounds. Traditional similarity
measures have included spectrogram cross correlation �e.g.,
Clark et al., 1987�, hidden Markov models �e.g., Clemins et
al., 2005�, or measures of the distance between frequency
contours �e.g., Buck and Tyack, 1993�. The first shortcoming
of any study using spectrograms or frequency contours �plots
of the fundamental frequency of a vocalization over time� is
that, in order to compare two entire sound patterns using
most traditional distance measures, they need to be standard-
ized for time. This can have the effect of rating two sound
patterns as very similar even though their lengths might dif-
fer by an order of magnitude. In addition, for signals with
strong frequency modulation, temporal standardization can
have the effect of generating artificially low similarity values
for signals that are in fact very similar in shape, but instead
differ only slightly in the length of different components so
that equivalent sections of the signals do not overlap �see
Fig. 1�. Animals are relatively insensitive to such slight dif-
ferences in the duration of sound patterns. Dooling �1982�
suggests that birds are ten times more sensitive to changes in
the frequency of sounds than they are to changes in their
duration. Small differences in the duration of certain acoustic
features are therefore often insignificant to the animal and
any analysis of sound patterns must allow for this.

The other main feature of vertebrate auditory perception
that needs to be considered when developing automated
methods of acoustic categorization is that tonal frequency is
not perceived on a linear but on an logarithmic scale. Hu-

FIG. 1. Matching a frequency contour �pulse-repetition rate as a function of
time� of a pulsed call of transient killer whales �solid line� to a reference
contour �dotted line� using standardization of call length �panel �a�� and
dynamic time warping �local extension and compression of the time axis of
the frequency contour to maximize frequency overlap—panel �b��. The
match �given as the average similarity in frequency in percent for all points
of the two contours� is 69.9% using standardization, but 86.9% using dy-
namic time warping.
mans perceive the difference between two tones with fre-
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quencies that differ by a factor of 2 �an octave� as being the
same regardless of whether the two tones have frequencies of
110 and 220 Hz or 880 and 1760 Hz. This logarithmic per-
ception of frequency is reflected by the distribution of hair
cells sensitive to different frequencies in the inner ear and
appears to be common to all terrestrial vertebrates �e.g.,
Müller, 1991; Smolders et al., 1995; Vater and Siefer, 1995;
Manley et al., 1999�. This means that acoustic features with
higher fundamental frequencies can exhibit greater absolute
frequency variation before they are perceived as different
compared to features with low fundamental frequencies. Fre-
quency measurements should therefore be log-transformed
before comparison, or differences in frequencies should be
expressed as relative rather than absolute values. Any
scheme that fails to account for the logarithmic perception of
frequency runs the risk of biasing categorization towards an
inflated number of categories of high-frequency sound pat-
terns.

C. Unsupervised learning in artificial neural networks

In this paper we introduce and test a novel method of
call categorization that allows for flexibility in the time do-
main and accounts for the logarithmic perception of sound
frequency. It uses an adaptive resonance theory �ART� neural
network that is unsupervised in its learning phase. Super-
vised and unsupervised learning describe two different appli-
cations of self-organizing artificial neural networks. Super-
vised learning is a method of automated classification, where
an artificial neural network learns to classify unknown pat-
terns using information extracted from a training set of iden-
tified patterns. For example, artificial neural networks can be
trained in this way to distinguish between the vocal patterns
of different identified individuals �e.g., Reby et al., 1997;
Campbell et al., 2002; Terry and McGregor, 2002�, social
groups �e.g., Deecke et al., 1999�, or species �e.g., Phelps
and Ryan, 1998; Parsons and Jones, 2000�, or between vocal
patterns given in response to clearly identifiable stimuli �e.g.,
predator-specific calls �Placer and Slobodchikoff, 2000��. In
contrast, unsupervised learning describes a series of artificial
neural network algorithms that can be used to categorize pat-
terns without prior training—they are the self-organizing
analogs of traditional clustering schemes. The main advan-
tage of unsupervised learning is that, for a new pattern to be
assigned to a category, it must only be compared to a small
subset of reference patterns �or neighboring patterns in the
case of self-organizing maps� rather than all other patterns in
the data set. Unsupervised learning algorithms therefore lend
themselves to the analysis of large data sets where comput-
ing time is limiting, or to situations where categorization
must happen in real time.

The most common algorithms for unsupervised learning
are self-organizing maps �SOM, e.g., Kohonen �1988��, com-
petitive learning �e.g., Grossberg, 1987�, and adaptive reso-
nance theory �ART� neural networks �e.g., Carpenter and
Grossberg, 1987�. The categorization algorithm used in this
study is based on an ART2 neural network �Carpenter and
Grossberg, 1987�. ART2 is an unsupervised learning algo-

rithm in which a given pattern is compared to a set of refer-
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ence patterns. If the input pattern resembles one of the ref-
erence patterns with a certain degree of similarity �called the
vigilance�, the input is assigned to the category represented
by this reference pattern and the reference pattern itself is
updated and made even more similar to the current input
pattern. If the input pattern does not resemble any reference
pattern sufficiently, it becomes the reference pattern for a
new category. ART2 neural networks have the advantage that
they do not require assumptions about the frequencies of
patterns in different categories. In contrast, competitive
learning algorithms and self-organizing maps assume that in-
put patterns are evenly distributed between categories and
therefore tend to split frequent input patterns into finer cat-
egories. For this reason, ART neural networks lend them-
selves to the categorization of behavior patterns where equal
distribution can rarely be assumed.

D. Objectives

Our objective for this study is to develop and test an
automated method for categorizing stereotyped vocal pat-
terns of animals using test data sets of vocalizations of
bottlenose dolphins and killer whales. Both of these species
produce a variety of structurally distinct stereotyped sound
patterns and dividing these into meaningful sound categories
is an important first step before vocal repertoires, or the
structure of given sound types, can be compared between
individuals and populations, behavior contexts, or over time.
While the methodology is developed using data sets from
two species of toothed whales, our hope is that it can be
applied to the vocalizations of a wide variety of species.

In order to allow for variation in the lengths of different
components of the sounds, similarities between input and
reference patterns were calculated using dynamic time-
warping �e.g., Sakoe and Chiba, 1978; Buck and Tyack,
1993�. Dynamic time-warping is an algorithm developed for
the automated recognition of human speech that allows lim-
ited compression and expansion of the time axis of a signal
to maximize frequency overlap with a reference signal �see
Fig. 1 for an illustration of dynamic time-warping�. To ac-
count for exponential perception of frequency in this analy-
sis, we expressed similarity of contours as their relative simi-
larity in frequency.

We test the performance of this method on two catego-
rization problems. The first is a set of frequency contours of
bottlenose dolphin whistles described in detail by Janik
�1999�. Bottlenose dolphins produce a variety of whistles,
including stereotyped signature whistles which are individu-
ally distinctive. Since signature whistles represent biologi-
cally defined categories and their structure has been shown to
convey important information �i.e., identity of the caller� to
the animals �Janik and Slater, 1998; Sayigh et al., 1999�, we
aim to use this data set to test whether the categories deter-
mined by our analysis are congruent with categories known
to be perceived as meaningful by bottlenose dolphins.

The second data set consists of frequency contours of
killer whale calls. The pulsed calls of killer whales are highly
stereotyped and can be divided easily and consistently into

categories by human observers �e.g., Ford, 1989, 1991�. We
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present the categorization performance and investigate the
vigilance parameter that controls the fineness of categoriza-
tion and therefore the number of categories established. We
also show how optimality of categorization can be achieved
without prior knowledge of the underlying categories by se-
lecting a vigilance parameter for the neural network that
minimizes variation within categories while maximizing dif-
ferences between categories.

II. METHODS

A. Data sets, acoustic analysis, and contour
extraction

Both the dolphin whistle and killer whale call data sets
consist of frequency contours extracted from spectrograms of
calls or whistles. Dolphin whistles are tonal signals and fre-
quency contours therefore give the fundamental frequency of
a whistle as a function of time. The recordings for our study
were collected in 1996 from a social group consisting of two
female and two male bottlenose dolphins held at Zoo Duis-
burg in Germany. We recorded whistles with two Dowty
SSQ 904 hydrophones connected to a Marantz CP430 tape
recorder �system frequency response: 1–20 kHz±3 dB�.
Time resolution of the extracted frequency contours was
10 ms. For details on the recording and selection of bottle-
nose dolphin whistles and on the extraction of frequency
contours see Janik et al. �1994�; Janik and Slater �1998�, and
Janik �1999�.

The frequency contours of killer whale calls were gen-
erated from a sample of calls digitized from field recordings
of transient killer whales. Recordings were made with a va-
riety of hydrophones on Type II audio cassette tapes, digital
audio tape, or reel-to-reel tape. Frequency responses of the
recording systems were 1–16 kHz±3 dB or better. We rated
the quality of each call from the spectrogram on a scale from
one to five, taking into account signal-to-noise ratio, echoes,
and reverberation, as well as background noise. In order to
avoid categorization due to noise artifacts �e.g., faint call
elements that were missed�, calls of the three lowest quality
categories were excluded from this analysis. Since killer
whale calls are pulsed signals �Schevill and Watkins, 1966�,
frequency contours give the pulse-repetition rate rather than
fundamental frequency. We used the sidewinder algorithm
�Deecke et al., 1999� to extract frequency contours from
spectrograms of killer whale calls, with the difference that
for the current analysis the contours were not standardized
for time. Time resolution for these frequency contours was
also 10 ms.

B. ARTwarp—Combining dynamic time-warping and
adaptive resonance theory

The neural network used in this analysis was an ART2
neural network for the categorization of analog input pat-
terns. The computer script was a simulation of the ART2
algorithm of Carpenter and Grossberg �1987�. However, this
algorithm was modified in two ways. First, the similarity
between frequency contours and the set of reference contours
was calculated using dynamic time-warping to ensure maxi-

mum overlap in the frequency domain. Second, if a fre-
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quency contour matched a reference contour better than the
critical similarity �vigilance�, this reference contour was then
modified in three ways to be more similar to the input pat-
tern. �1� The frequency content of the reference contour was
made more similar to the time-warped frequency contour by
adding a proportion �10%� of the difference between refer-
ence contour and time-warped input contour. �2� The relative
lengths of different components of the reference contour
were modified to be more similar to the current frequency
contour by applying a warping function that stretched or
compressed the time axis by a proportion �10%� of the in-
verse of the original warping function generated when input
and reference contour were compared. �3� The length of the
reference contour was made more similar to the current input
contour. The extent of the change in length �number of
points� was given by the learning rate �10% of the difference
in our case�. To increase or decrease the number of frequency
points, the frequency measurements in the contour were in-
terpolated at a number of equally spaced points correspond-
ing to the new length of the contour. If the current input
pattern did not match any of the reference patterns better
than the critical similarity, it became the reference contour
for a new category. All frequency contours were repeatedly
presented to the neural network until they consistently
matched the same reference contour �i.e., no reclassifications
occurred between iterations�.

The dynamic time-warping algorithm used in this study
was that applied by Sakoe and Chiba �1978� and Buck and
Tyack �1993� with the difference that the algorithm allowed
horizontal and vertical jumps of three frequency points in the
contour �rather than two points as in Sakoe and Chiba �1978�
and Buck and Tyack �1993��. A frequency contour can there-
fore be “sped up” or “slowed down” in parts by a factor of 3
to fit the reference contour. In addition, the algorithm calcu-
lated the relative frequency similarity �S� in percent between
both frequency contours rather than the total square differ-
ence of Sakoe and Chiba �1978� or the average square dif-
ference of Buck and Tyack �1993�. This was done by divid-
ing the smaller frequency value by the larger value at each
point and multiplying by 100:

S�i� =
min�M�i�,N�i��
max�M�i�,N�i��

� 100,

where M is the reference pattern and N the input pattern.
Like Buck and Tyack �1993�, we also divided the total dif-
ference by the length of the reference contour. The measure
of similarity therefore gives the average relative similarity in
frequency for the reference and input contour after time
warping.

C. Experiment I: Categorization of bottlenose dolphin
whistles

The level of critical similarity �vigilance� for the analy-
sis of dolphin whistles was obtained by categorizing only the
signature whistles of one individual �individual A of Janik
�1999�� and increasing the vigilance in steps of 1% until the
analysis split these signature whistles into two categories.

The critical vigilance �96%� is the highest value that still
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recognizes the whistles as a single category. The entire data
set was then categorized using this vigilance parameter and
the resulting categories were analyzed to test whether the
signature whistle categories were recognized.

D. Experiment II: The appropriate fineness of
categorization

In this experiment, we categorized a sample of 50 fre-
quency contours randomly chosen from all calls with the two
highest quality scores in the transient killer whale data set.
These calls came from 25 recordings of different groups.
Unlike the bottlenose dolphin whistles, this data set does not
contain any sound categories known a priori to be biologi-
cally meaningful. Therefore the method to determine the ap-
propriate fineness of categorization used for the dolphin
whistles could not be applied. In the absence of identifiable
categories, we wanted to find the categorization that would
explain a maximum of the variation in call structure with a
minimum number of call categories. To do this, we initially
set the vigilance to zero. At this level, call categories are
assigned only by call length �since any two contours whose
length differs by more than a factor of 3 are automatically
assigned a similarity of zero; see Buck and Tyack �1993��.
The vigilance was then increased to 100% in 50 logarithmic
steps and the sample of contours was categorized. At a vigi-
lance of 100%, each frequency contour is assigned to its own
category. For each categorization, we determined the number
of categories generated. In order to investigate patterns of
within-category and between-category variation, we calcu-
lated the similarity matrix for all frequency contours in the
data. This matrix contained similarity values of all possible
pairwise comparisons of contours using dynamic time-
warping. Using this matrix, we could determine the average
similarity of contours in the same category �within-category
variation�, as well as the average similarity of contours in
different categories �between-category variation� for each
categorization. The categorization where a minimum number
of distinct categories explain a maximum amount of differ-
ence in the frequency contours can then be identified by plot-
ting the ratio of within-category and between-category varia-
tion and determining the number of categories where this
ratio levels off �i.e., adding additional categories does little to
explain additional variation�. This is analogous to the vari-
ance ratio criterion �e.g., Calinski and Harabasz, 1974;
Everitt et al., 2001; Schreer et al., 1998; Rendell and White-
head, 2003� to determine the optimal number of groups in
cluster analysis.

E. Visualization of neural network performance

In order to illustrate how the ARTwarp algorithm cat-
egorizes the discrete calls of killer whales from frequency
contours, we used the neural network to categorize a sample
of 20 frequency contours, small enough so that it could be
graphed on a single page. These were randomly chosen from
the two highest quality categories in the data set of transient
killer whale calls. The vigilance parameter used in this analy-

sis was the optimum value determined in experiment II.
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III. RESULTS

A. Experiment I: Categorization of bottlenose dolphin
whistles

The categorization of the data set of bottlenose dolphin
whistles is shown in Fig. 2. Using a vigilance of 96%, the
analysis divided the 104 whistle contours into 46 categories
each containing between 1 and 14 contours �mean: 2.26,
standard deviation: 2.62 contours�. With regard to the behav-
iorally defined categories of signature whistles recorded from
each of the five dolphins in isolation, the analysis correctly
clustered two whistle types �A and D2� into individual cat-
egories but made three errors while categorizing the other
three whistle types: It added an additional whistle �no. 75� to
the category containing the contours of whistle type C. In the
case of whistle types B and D1, a single contour was not
assigned to the category containing the whistle types, but
was put in a category of its own.

B. Experiment II: The appropriate fineness of
categorization

The effects of increasing the vigilance parameter on the
categorization of transient killer whale calls are illustrated in
Fig. 3. With higher vigilance the analysis generated an in-
creasing number of categories. Both the average similarity of

frequency contours within a category and the average simi-
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larity of contours in different categories increased as more
and more categories were added. However, they did so at
different rates. Initially the rate of increase in the between-
category similarity was relatively low and the rate of in-
crease in the within category variation was high. At a critical
point, however, the rate of increase in the within-category
similarity slowed �since new categories explain little addi-
tional variation� and the rate of increase in the between-
category similarity increased �since more and more natural
clusters in the data set were divided between categories�.
Adding further categories after this critical point does little to
improve the categorization. The plot of the ratio of within
and between-category variation �Fig. 3�b�� therefore leveled
off abruptly at a vigilance of 81.24%. At this point the analy-
sis generated ten categories.

C. Visualization of neural network performance

The frequency contours used in this experiment, as well
as the resulting call categories, are shown in Fig. 4. The
analysis divided the 20 contours into six categories each con-
taining between two and seven calls. The categories were
largely consistent with the call types established by Ford
�1984� and Ford and Morton �1991�: Category 1 contained
calls classified as T08i, category 2 represents the T04 call
type of Ford �1984� and the T03ii call type of Ford and

FIG. 2. Categorization of frequency contours of bottle-
nose dolphin whistles using an ART2 neural network
and dynamic time warping to calculate similarity. Num-
bers represent individual whistle contours. Signature
whistles are shown in bold and boxes identify signature
whistles from the same individual. Signature whistle
categories that were split by the analysis are linked with
dotted lines. See Janik �1999� for visual representations
of the whistle contours.
Morton �1991�, category 3 is equivalent to the T01 call type,
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and category 4 represents the T07 call type of Ford and Mor-
ton �1991�. Category 5 contained calls classified as subtype
T07ii by Ford and Morton �1991� and category 6 is equiva-
lent to their T02 call type.

IV. DISCUSSION

A. Categorization of bottlenose dolphin whistles

The automated categorization combining dynamic time-
warping with an ART2 neural network was able to recognize
biologically meaningful categories in our data set of bottle-
nose dolphin whistles. While the analysis was not designed
to detect individual signature whistles and identify them as
such �a problem of classification, not categorization� it did
recognize the stereotyped signature whistles as uniform sig-

nal categories to a high degree. By doing so, our method
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performed much better than any of the statistical procedures
tested by Janik �1999�, none of which proved satisfactory at
detecting these biologically significant signal categories. Our
automated categorization even performed marginally better
at detecting the signature whistle categories in the data set of
bottlenose dolphin whistles than did the human observers of
Janik �1999� who made on average 3.4 mistakes. Interest-
ingly, the neural network did not agree with the human ob-
servers in the categorization of nonsignature whistles. In
general, the automated analysis created finer categories con-
taining fewer contours for this subset. Janik �1999� identified
four combinations of nonsignature whistles common to the
categorization of all five observers and none of these combi-
nations occur in the neural network categorization. Since we
have no external validation for appropriate classification of

FIG. 3. Effect of the vigilance on the
categorization of 50 frequency con-
tours from calls of transient killer
whales. Panel �a� shows the increase
in the number of categories generated
with increasing vigilance. Panel �b�
shows the change in the variance ratio
�ratio of within- to between-category
variance� with increasing vigilance
and panel �c� shows the change in the
variance ratio with increasing numbers
of categories. This ratio reached a
maximum at a vigilance of 81.24%
�10 categories�. Trend lines in panels
�b� and �c� are sixth-order polynomi-
als.
nonsignature whistles, it is impossible to say which catego-
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rization scheme is of greater biological relevance here.
The two signature whistles that were assigned to sepa-

rate categories from the rest of their whistle types are both
shorter than the other whistles of the same type and may
represent truncated versions of the individuals’ signature
whistles. If this is the case, relaxing the endpoint constraint
during dynamic time-warping �i.e., permitting the time-
warped contour to be shorter in duration than the reference
contour and calculating frequency similarity only for the sec-
tion of overlap with the reference contour; see Parsons
�1987�� would improve classification for these contours.

B. Choosing the vigilance parameter

Most automated analytic procedures require the investi-
gator to choose some parameters that control their perfor-
mance. In the automated categorization described here, the
performance depends to a large degree on the vigilance of
the neural network. This parameter controls the fineness of
categorization, that is, the size and number of categories that
are generated. It has no influence on which patterns are rated
as similar in the analysis. Note that the problem of deciding
on the appropriate fineness of categorization is shared by
categorization of behavior using human observers: we refer

to observers as “joiners” or “splitters” depending on how fine
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their behavior categories tend to be. As an example, Saulitis
�1993� divides the surface behavior of killer whales into 14
categories, whereas Ford �1989� distinguishes between only
five behavior categories. We have no information on the ex-
tent to which this difference is due to differences in the be-
havior of killer whale populations studied by the two re-
searchers, or differences in the fineness of categorization
considered appropriate to describe the observed behavioral
variation by the authors. The advantage of the automated
procedure is obviously that the fineness of categorization can
be quantified for each analysis.

The categorization of bottlenose dolphin whistles dem-
onstrates that where biologically relevant sound categories
can be identified a priori, these can be used to determine the
vigilance parameter appropriate for categorization. Such bio-
logically defined categories may be sound patterns specific to
certain individuals or populations or to clearly defined con-
texts, such as isolation from group members �Symmes et al.,
1979; Janik, 1999� or the presence of a food source �Judd
and Sherman, 1996; Roush and Snowdon, 2000� or a preda-
tor �e.g., Placer and Slobodchikoff, 2000�. Human observers
frequently use such information from predefined categories
to determine the appropriate resolution for behavioral cat-
egorization.

FIG. 4. Results of the categorization
of frequency contours from 20 ran-
domly chosen calls of transient killer
whales. All frequency contours in the
same column were assigned to the
same call type by the analysis. The
reference contours representing each
category are shown in the first row.
Labels give the recording session �in
the format yy-mm-dd� for each fre-
quency contour.
In many categorization problems, it is desirable to ex-
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plain a maximum amount of the observed acoustic variation
using a minimum number of sound categories. In situations
where acoustic variation is difficult to quantify, this can be
hard to achieve. However, wherever measures of acoustic
similarity are readily available, simple algorithms can help to
determine the appropriate number of categories for analysis.
In situations where no external validation of categories is
available, calculating the ratio of variation within to variation
between categories for a large number of vigilance values
provides a useful approach to determining the appropriate
fineness of categorization. This is time consuming for large
samples of sound patterns but, as demonstrated in experi-
ment II, categorization of a randomly selected subset will
generally allow identification of the appropriate vigilance pa-
rameter. Applying alternative goodness of fit measures, such
as the Bayesian information criterion or Aikake’s informa-
tion criterion �e.g., Kuha, 2004�, to categorizations with in-
creasing vigilance setting may similarly help to identify the
appropriate fineness of categorization in future studies.

C. Applicability to other categorization problems in the
study of behavior

While this method has so far only been tested on the
vocalizations of toothed whales, these results should also en-
courage its application to analyses of vocal behavior in other
species. Unsupervised learning algorithms have been applied
successfully to the categorization and classification of a va-
riety of bioacoustic signals �e.g. Leinonen et al., 1993; Terry
and McGregor, 2002� and allowing for differences in the
length of acoustic signals and their components by incorpo-
rating dynamic time-warping may prove useful in these and
other situations as well. As described here, our analysis is
currently limited to vocalizations that can be described ad-
equately by frequency contours. This includes the sound sig-
nals of many species of amphibians, birds, and mammals.
However, in species with vocalizations that are broadband
�e.g., Campbell et al., 2002�, or where relevant information
is encoded in the harmonic content �e.g., Weiss and Hauser,
2002�, frequency contours alone are inadequate to describe
vocal patterns. Fortunately, dynamic time-warping can also
be used to compare spectrograms �it was in fact first devel-
oped to classify human speech patterns from spectrograms
�see Sakoe and Chiba, 1978�� and the neural network com-
ponent of the analysis could easily be adapted to deal with
the two-dimensional format of spectrograms rather than one-
dimensional frequency contours, making the analysis appli-
cable to the categorization of vocal behavior in a wide vari-
ety of species.

Since it was developed to address peculiarities of acous-
tic perception, the methodology as described in this study is
probably of limited value to categorize behaviors other than
those that are acoustic. Nonetheless, elements applied in the
current analysis may prove useful elsewhere: the ART2 neu-
ral network can be used with similarity measures other than
dynamic time-warping in a wide variety of categorization
problems. Conversely, dynamic time-warping and its exten-
sion of hidden Markov models will be useful in any situation
where the trajectory of change in a behavioral parameter is

more important than the precise timing of the change. The
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categorization of dive profiles from aquatic birds and mam-
mals �e.g., Schreer et al., 1998; Lesage et al., 1999; Malcolm
and Duffus, 2000� may prove to be a valuable example. In
addition, much if not most of sensory perception is nonlinear
in scale �usually exponential or logarithmic�, and this is im-
portant to bear in mind when quantifying the strength and
quality of behavioral stimuli for categorization. This study
therefore serves to illustrate the importance of obtaining and
applying relevant information about the sensory perception
of study animals when designing categorization schemes for
the study of their behavior.

V. CONCLUSIONS

Our results suggest that automated categorization of
bioacoustic signals can present a powerful alternative to cat-
egorization by human observers, as long as the importance of
the time domain and the frequency domain in the auditory
perception of the study species is understood and any pecu-
liarities in the way time and frequency parameters are per-
ceived are considered. Automated methods such as the one
used in our study are particularly useful in situations were
large data sets need to be analyzed and where the size of
acoustic repertoires must be compared between individuals,
social groups or species, or over time.

ACKNOWLEDGMENTS

We thank the staff of Zoo Duisburg for the opportunity
to work with their animals and for their support during the
recording of dolphin whistles, especially Roland Edler, Re-
inhard Frese, Manuel García Hartmann, Friedrich Ostenrath,
and Ulf Schönfeld. Recordings for the analysis of killer
whale vocalizations were generously supplied by Nancy A.
Black, John K. B. Ford, P. Dawn Goley, Dan McSweeney,
Paul Spong, and Richard L. Ternullo. The ART2 neural net-
work algorithm was adapted from a program originally writ-
ten by Aaron Garrett, and Mary Royerr helped with statisti-
cal aspects of this paper. Earlier drafts of this manuscript
benefited from comments by Karen E. McComb, John K. B.
Ford, Michael J. Ritchie, and Peter J. B. Slater. V.M.J was
funded by a Royal Society University Research Fellowship,
and V.B.D received financial support from a DAAD Dok-
torandenstipendium aus Mitteln des 3. Hochschulsonderpro-
gramms during part of this study.

Buck, J. R., and Tyack, P. L. �1993�. “A quantitative measure of similarity
for Tursiops truncatus signature whistles,” J. Acoust. Soc. Am. 94, 2497–
2506.

Calinski, T., and Harabasz, J. �1974�. “A dendrite method for cluster analy-
sis.” Commun. Stat: Theory Meth. 3, 1–27.

Campbell, G. S., Gisiner, R. C., Helweg, D. A., and Milette, L. L. �2002�.
“Acoustic identification of female Steller sea lions �Eumetopias jubatus�,”
J. Acoust. Soc. Am. 111, 2920–2928.

Carpenter, G. A., and Grossberg, S. �1987�. “ART 2: Self-organization of
stable category recognition codes for analog input patterns,” Appl. Opt.
26, 4919–4930.

Cerchio, S., and Dahlheim, M. E. �2001�. “Variation in feeding vocalizations
of humpback whales �Megaptera novaeangliae� from Southeast Alaska,”
Bioacoustics 11, 277–295.

Chabot, D. �1988�. “A quantitative technique to compare and classify hump-
back whale �Megaptera novaeangliae� sounds,” Ethology 77, 89–102.

Clark, C. W. �1982�. “The acoustic repertoire of the southern right whale, a

quantitative analysis,” Anim. Behav. 30, 1060–1071.

eecke and V. Janik: Automated categorization of bioacoustic signals



Clark, C. W., Marler, P., and Beeman, B. �1987�. “Qualitative analysis of
animal vocal phonology and application to swamp sparrow song,” Ethol-
ogy 76, 101–115.

Clemins, P. J., Johnson, M. T., Leong, K. M., and Savage, A. �2005�. “Au-
tomatic classification and speaker identification of African elephant �Lox-
odonta africana� vocalizations,” J. Acoust. Soc. Am. 117, 956–963.

Deecke, V. B., Ford, J. K. B., and Spong, P. �1999�. “Quantifying complex
patterns of bioacoustic variation: Use of a neural network to compare
killer whale �Orcinus orca� dialects,” J. Acoust. Soc. Am. 105, 2499–
2507.

Dooling, R. J. �1982�. “Auditory perception in birds,” in Acoustic Commu-
nication in Birds, edited by E. D. Kroodsma, E. H. Miller, and H. Ouellet
�Academic, London�, pp. 95–131.

Elowson, A. M., and Hailman, J. P. �1991�. “Analysis of complex variation:
Dichotomous sorting of predator-elicited calls of the Florida scrub jay,”
Bioacoustics 3, 295–320.

Everitt, B. S., Landau, S., and Leese, M. �2001�. Cluster Analysis, 4th ed.
�Arnold, London�, pp. 102–105.

Ford, J. K. B. �1984�. “Call Traditions and Vocal Dialects of Killer Whales
�Orcinus orca� in British Columbia,” �Ph.D. dissertation, University of
British Columbia, Vancouver, BC�.

Ford, J. K. B. �1989�. “Acoustic behaviour of resident killer whales �Orcinus
orca� off Vancouver Island, British Columbia,” Can. J. Zool. 67, 727–745.

Ford, J. K. B. �1991�. “Vocal traditions among resident killer whales �Orci-
nus orca� in coastal waters of British Columbia, Canada,” Can. J. Zool.
69, 1454–1483.

Ford, J. K. B., and Morton, A. B. �1991�. “Vocal behaviour and dialects of
transient killer whales in coastal waters of British Columbia, California
and southeast Alaska,” in Abstracts of the Ninth Biennial Conference on
the Biology of Marine Mammals �Society for Marine Mammalogy, Chi-
cago, IL�.

Grossberg, S. �1987�. “Competitive learning: From interactive activation to
adaptive resonance,” Cogn. Sci. 11, 23–63.

Janik, V. M. �1999�. “Pitfalls in the categorization of behaviour: A compari-
son of dolphin whistle classification methods,” Anim. Behav. 57, 133–
143.

Janik, V. M., and Slater, P. J. B. �1998�. “Context-specific use suggests that
bottlenose dolphin signature whistles are cohesion calls,” Anim. Behav.
56, 829–838; Printer’s Erratum: Anim. Behav.57, 1173.

Janik, V. M., Dehnhardt, G., and Todt, D. �1994�. “Signature whistle varia-
tions in a bottlenosed dolphin, Tursiops truncatus,” Behav. Ecol. Socio-
biol. 35, 243–248.

Jones, A. E., Ten Cate, C., and Bijleveld, C. J. H. �2001�. “The interobserver
reliability of scoring sonagrams by eye: A study on methods, illustrated on
zebra finch songs,” Anim. Behav. 62, 791–801.

Judd, T. M., and Sherman, P. W. �1996�. “Naked mole-rats recruit colony
mates to food sources,” Anim. Behav. 52, 957–969.

Kohonen, T. �1988�. “The self-organizing map,” Proc. IEEE 78, 1464–
1480.

Kuha, J. �2004�. “AIC and BIC: Comparisons of assumptions and perfor-
mance,” Sociolog. Methods Res. 33, 188–229.

Leinonen, L., Hiltunen, T., Torkkola, K., and Kangas, J. �1993�. “Self-
organized acoustic feature map in detection of fricative-vowel coarticula-
tion,” J. Acoust. Soc. Am. 93, 3468–3472.

Lesage, V., Hammill, M. O., and Kovacs, K. M. �1999�. “Functional classi-
fication of harbor seal �Phoca vitulina� dives using depth profiles, swim-
ming velocity, and an index of foraging success,” Can. J. Zool. 77, 74–87.

Malcolm, C. D., and Duffus, D. A. �2000�. “Comparison of subjective and
statistical methods of dive classification using data from a time-depth re-
J. Acoust. Soc. Am., Vol. 119, No. 1, January 2006 V. Deecke a
corder attached to a gray whale �Eschrichtius robustus�,” J. Cetacean Res.
Manage. 2, 177–182.

Manley, G. A., Koppl, C., and Sneary, M. �1999�. “Reversed tonotopic map
of the basilar papilla in Gekko gecko,” Hear. Res. 131, 107–116.

Müller, M. �1991�. “Frequency representation in the rat cochlea,” Hear. Res.
51, 247–254.

Nowicki, S., and Nelson, D. A. �1990�. “Defining natural categories in
acoustic signals: comparison of three methods applied to ‘chick-a-dee’ call
notes,” Ethology 86, 89–101.

Parsons, S., and Jones, G. �2000�. “Acoustic identification of twelve species
of echolocating bat by discriminant function analysis and artificial neural
networks,” J. Exp. Biol. 203, 2641–2656.

Parsons, T. W. �1987�. Voice and Speech Processing �McGraw-Hill, New
York�.

Phelps, S. M., and Ryan, M. J. �1998�. “Neural networks predict response
biases of female túngara frogs,” Proc. R. Soc. London, Ser. B 265, 279–
285.

Placer, J., and Slobodchikoff, C. N. �2000�. “A fuzzy-neural system for
identification of species-specific alarm calls of Gunnison’s prairie dogs,”
Behav. Processes 52, 1–9.

Reby, D., Lek, S., Dimopoulos, I., Joachim, J., Lauga, J., and Aulagnier, S.
�1997�. “Artificial neural networks as a classification method in the behav-
ioural sciences,” Behav. Processes 40, 35–43.

Rendell, L. E., and Whitehead, H. �2003�. “Comparing repertoires of sperm
whale codas: A multiple methods approach,” Bioacoustics 14, 61–81.

Roush, R. S., and Snowdon, C. T. �2000�. “Quality, quantity, distribution
and audience effects on food calling in cotton-top tamarins,” Ethology
106, 673–690.

Sakoe, H., and Chiba, S. �1978�. “Dynamic programming algorithm optimi-
zation for spoken word recognition,” IEEE Trans. Acoust., Speech, Signal
Process. ASSP-26, 43–49.

Saulitis, E. L. �1993�. “The Behavior and Vocalizations of the ‘AT’ Group of
Killer Whales �Orcinus orca� in Prince William Sound, Alaska,” �M.Sc.
thesis, University of Alaska, Fairbanks, AK�.

Sayigh, L. S., Tyack, P. L., Wells, R. S., Solow, A. R., Scott, M. D., and
Irvine, A. B. �1999�. “Individual recognition in wild bottlenose dolphins:
A field test using playback experiments,” Anim. Behav. 57, 41–50.

Schevill, W. E., and Watkins, W. A. �1966�. “Sound structure and direction-
ality in Orcinus �killer whale�,” Zoologica �N.Y.� �N.Y.� 51, 70–76.

Schreer, J. F., Hines, R. J. O., and Kovacs, K. M. �1998�. “Classification of
dive profiles: A comparison of statistical clustering techniques and unsu-
pervised artificial neural networks,” J. Agric. Biol. Environ. Stat. 3, 383–
404.

Smolders, J. W. T., Ding-Pfennigdorff, D., and Klinke, R. �1995�. “A func-
tional map of the pigeon basilar papilla: Correlation of the properties of
single auditory nerve fibres and their peripheral origin,” Hear. Res. 92,
151–169.

Symmes, D., Newman, J. D., Talmage-Riggs, G., and Katz Lieblich, A.
�1979�. “Individuality and stability of isolation peeps in squirrel mon-
keys,” Anim. Behav. 27, 1142–1152.

Terry, A. M. R., and McGregor, P. K. �2002�. “Census and monitoring based
on individually identifiable vocalizations: The role of neural networks,”
Animal Conservation 5, 103–111.

Vater, M., and Siefer, W. �1995�. “The cochlea of Tadarida brasiliensis:
Specialized functional organization in a generalized bat,” Hear. Res. 91,
178–195.

Weiss, D. J., and Hauser, M. D. �2002�. “Perception of harmonics in the
combination long call of cottontop tamarins, Sanguinus oedipus,” Anim.
Behav. 64, 415–426.
nd V. Janik: Automated categorization of bioacoustic signals 653


